
International Journal of Theoretical Physics, Vol. 36, No. 6, 1997 

Quantum-Symmetric and Quantum-Antisymmetric 
Matrices Corresponding to a Quantum Group 
and Quadratic Homogeneous Expressions on 
Quantum Hyperplane 

Zai-Zhe Zhong I 

Received January 4, 1997 

Quantum-symmetric matrices and quantum-antisymmetric matrices correspond- 
ing to a given quantum group are discussed, some concrete examples are given, 
and some relevant invariances are proven. 

In physics and mathematics symmetric and antisymmetric matrices play 
important roles, and in linear algebra symmetric matrices, antisymmetric 
matrices, coordinate transformations, and quadratic homogeneous forms are 
related to each other. In quantum groups and noncommutative geometry 
(Manin, 1988; Faddeev et al., 1987), when the quantum deformation parame- 
ters approach 1, a quantum group Gq can in fact be regarded as an ordinary 
linear group G. Therefore we expect that in quantum groups and noncommuta- 
five geometry, there are also quantum-symmetric matrices and quantum- 
antisymmetric matrices. This paper gives some fundamental results for this 
problem. We find that the case is different from ordinary linear algebra. 
There is not a unitary form for the quantum-symmetric matrix or quantum- 
antisymmetric matrix in quantum groups and noncommutative geometry. In 
fact, in ordinary linear algebra whenever a matrix M = (Mj) is in one of the 
matrix groups, if M~ = M~, then M is called symmetric, or if M~ = -M~,  
then M is called antisymmetric, and the symmetry or antisymmetry is invariant 
under an involution transformation of matrices, etc. However, for different 
quantum groups Gq, the Gq-symmetric or Gq-antisymmetric matrices have 
different forms, which depend on the choice of the expressions for the commu- 
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tation relation in these quantum groups. The quantum symmetry is also 
invariant under an involution transformation of quantum matrices. In particu- 
lar, it is interesting that in the ordinary sense these Gq-symmetric o r  Gq- 
antisymmetric matrices, on the contrary, are not symmetric or antisymmetric, 
respectively. Only when the quantum deformation parameters approach 1 do 
they change into ordinary symmetric or antisymmetric matrices, respectively. 

In this paper we use the following known results. Suppose that Gq is a 
quantum group whose elements are n X n quantum matrices M = (Mj); then 
there is a Yang-Baxter matrix R = (/?~t) ( i , j ,  k ,  l = 1, 2 . . . . .  n) corresponding 
to Gq, satisfying the Yang-Baxter equation 

R12R23RI2 = R23RI2R23 (1) 

The action space of G o is a quantum hyperplane P, which, in fact, is a 
noncommutative and associative C- (or any field of characteristic zero) alge- 
bra with the unit element. Let x i (i = 1, 2 . . . . .  n) denote the coordinates 
(the generators). We require that in P there is the differential calculus: the 
partial derivative operator a i : a / a x  i, O i ( x  j )  = ~Ji, and the differential d x i ( g i  . 

According to Song and Liao (1992, 1993), the commutation relations among 
x i, Oj, and dx  i are 

x i x  j = l ~ i j ' k ' l  (2a) 
Okl ~ 

x i d x  i = r,  ij ,4,.k,.l (2b) 
"" k l ~  "~ 

Ok X i  = ~i k "-1- I ' i j r k ' q "  (2c) 
..~ kl ~ v j  

d x  i d x J  = - ( f "  - l.~ij d~- kdar I (2d) 
~,~ Jkl ~ ~ 

OkdX i =  ( c - l ) i J k l d X l O  j (2e) 

aia j : BJkiakal (2f) 

where B and C are numerical matrices. The consistency of equations (2a)-(2f) 
is guaranteed by the following equations: 

(El2 -- BI2)(E12 + C12 ) ~-- 0 

(El2 - 8 1 2 ) C 2 3 C 1 2  -~- C23C12(E23  - -  823 ) (3) 

C12C23C12  -~ C23C12C23 

where E is the unit matrix. The concrete values of B and C can be chosen 
according to the corresponding/~ = (/?~l). In this paper, we assume that B 
and C have been determined for P. A quantum matrix M ~ Gq means that 
M satisfies the Yang-Baxter relation 

MIM2R12 -- /~I2MIM 2 (4) 
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The commutation relations (2a-2f) are covariant under the following 
transformations: 

x i _..> y i  = M~x j, dr  i ---> dY i = M~ dxJ 

0 i --") 3 i : [(mt)-l]/k0~ (5) 

where t denotes the transposition of a matrix. Equations (5) give 

(El2 - BI2)MIM2 = 0, (E12 + C?2t)MIM2 = 0 (6) 

Therefore the quantum group Gq can be regarded a "coordinate transformation 
group" of the quantum hyperplane P. 

Now we consider what is a quantum-symmetric matrix. If a i (i = 1, 2, 
. . . .  n) are n algebraic elements, and aia j = aja i (e.g., if ai ~ C), then the 
matrix N = (No-), Nij = aiay, obviously is a symmetric matrix in the ordinary 
sense. However, if ai does not commute with aj for i ~ j,  and there is a 
consistent commutation relation a,aj kt = Zij akat, where Z is a numerical matrix 
containing some deformation parameters, then N is not a symmetric matrix 
in the ordinary sense. However, the commutation relation Nob = Za%Nr~ 
reflects some "quantum symmetry" of N; in other words, N is a quantum 
deformation of an ordinary symmetric matrix. For a quantum group Gq, the 
quantum Gq symmetry must be invariant under the linear transformations 
introduced by transformations as in equations (5); therefore the choice of the 
numerical matrix Z is restricted. In addition, for the quantum group Gq such 
matrices, in fact, cannot consist of x i, 0j, and dx k, and we must reconsider 
other noncommutative algebras. 

Definition 1. If an n • n matrix ~ = (~aO) (a, b = 1, 2 . . . . .  n) satisfies 
the relation 

~ a b  = BiJa~ij (7) 

where B is defined as in equations (2a), (2f), and (3), then ~ is called a 
(quantum) Gq-symmetric matrix. 

Remark.  The ~ab can be both numbers and abstract algebraic elements, 
in the latter case there may be other commutation relations, and in this way 
some quantum groups can be nonlinearly realized (Zhong, 1994, 1996). In 
addition, such a Gq-symmetric matrix obviously is not a symmetric matrix 
in the ordinary sense unless all quantum deformation parameters approach 
1 (then B0b = ~/~6). 

Propos#ion 1. The Gq symmetry is invariant under a Gq-involution 
transformation, i.e., if ~ is Gq-symmetric and M ~ Gq, then SE = M t ~ M  is 
also Gq-symmetric. 
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Proof. According to equations (6) and (7), 

B~b~ij = B~bM~Mj~rs = M ~ M ~ r ,  = f~ab (8) 

SO ~ is Gq-symmetric. QED 

In order to write the concrete form of a Gq-symmetric matrix ~ ,  the 
relation between ~,b for a < b and ~ji  for j >--- i is required. Let us write 
equation (7) as 

~f~ab = Bi~J~f'i<j -Jr Bia~J~i~j (9) 

where here and in the following we use simplified symbols, e.g., B/~ j denotes 
those B~b when i < j,  and Bi~J~i< j =- ~,i<: BOb~i:, etc. Thus we can obtain 

(~b>o)'L~.>>, a -- (~r~,)'B;>~ ~ 

cp  V l  a < b  t s>--r 
" t ~ a < b l  I.-'i<j = ( ~ s ~ r )  Bi<j (10) 

where (~a<bY is the�89 - 1) line matrix (~12 . . . . .  ~1~, ~z3 . . . . .  ~,-l,~), 
etc., and 

L?<~b = ~ _ B~b,  Ly>>fl = g~ga _ B~,>>f (11) 

If we take equations (10) as linear equations about the unknown ~ < b  or 
~b>a and solve them, then we obtain the required expressions as follows: 

s ~ r  s>--r O s > - - r t ' l  - I~ i<i  
= Aa< b = D i <  j ~L, ) a ~ . b  ~a<~ ~,_>~A~<b, 

r~--s r~--s = g l r ' ~ - - s l ' l - l ~ d > i  
: Fb>a L~j>i k L" I b > a  ~ > a  ~<_~Fb>a, (12) 

where we have used det(L) 4: 0; for a given quantum group Gq, this condition 
generally can be satisfied by some suitable choices of B. Therefore the general 
form of a Gq-symmetric matrix is 

= F~ r~, ~22 "'" ~2. 

= ~21 ~32 ,>--r 
ooo , o .  

1 ~ n 2  " " " ~ n  

(13) 

Example I. The general quantum linear group is GLx;qij(N), where qij 
C (i < j )  are the quantum deformation parameters, and X e C, Poqij = 



Q u a n t u m - S y m m e t r i c  a n d  - A n t i s y m m e t r i c  M a t r i c e s  1 3 0 3  

X. When all e q 
Notice that R~ = R~'~, then according to Schirrmacher (1991), 

BiJKt 1~ i" ~r oiJ L oJi L I ~ikO]i ( l )  = ( X;qi)'JJ = + + + 1 - 
qji Pij] 

where 0 ij equals 1 for i > j and 0 otherwise. From (l 1) we obtain 

= qij = I, then GLx,qo ( N )  changes into the ordinary G L q ( N ) .  

?b>a b a s r 1 = B~>t ~k~t - -  I"j>i ~ ~i, r<-s = 
Prs 

I r<~$ s r s~r r s l"/~>l = ~ k S t - - ,  A/<k = 8tSkprs  
Prs 

Therefore the general form of a GLx;qq(N)-symmetric matrix is 

/ . . .  pj , . . .  

. . . . . . . . .  ::: . . .  

\ (I /Pln)~In (l'P2n)~2n \ ~ n ,  ~n2 "'" 

(14) 

(15) 

Pln~nl ~ 
P2.~.2 

L ) 
(16) 

To sum up, the GLx;qo (N)-symmetry relation is ~b,  = (llPab)~ab fora < b. 

Example 2. The general expressions with regard to SOq(N) are more 
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complicated; here we only do the calculation for SOq(3). Now we take (Song 



1 3 0 4  Z h o n g  

From (17) we obtain 
21 31 32, 

11 0 0 0 

12 1 o o 
q 

B> ~ = F~ = 13 0 1 0 
qZ 

22 O 0 0 

23 0 0 1 
q 

33 0 0 0 

21 31 

21 1 0 

L> > = 31 0 1 

32 0 0 

11 

21 

B~ = 22 

31 

32 

33 

32 

12 13 

0 0 

1 0 
q 
o 

0 

0 o 

o o 

12 

L< < = 13 

23 

23 

0 

0 

0 

0 

_1 
q 
0 

12 

1 

0 

0 

11 

21 

A,~ ~ 22 

31 

32 

33 

13 

0 

1 1 
q q2 

0 

12 13 23. 

0 0 0 

0 0 0 

0 (I - q:),/q 0 
q2+ q _  I 

0 q 0 
q 2 + q - I  

0 0 q 

0 0 0 

Therefore the general form of a SOq(3)-symmetric matrix is 

1 ;e12 
q 

2 . ~ 1 3  

t 
~ll  q~21 

= ~ 2 1  ' ~ 2 2  

':~31 ' ~ 3 2  

' ~ 2 2  ~ 2 3 ]  

1 q ~z3 2~33/ 

1 
q3 

( 1  - -  q2)v/~ q , ~ 3 1 ~  
q2--fi q ~ i ~32 + qZ + q - 1 ) q~32 

~33 

23 

0 

1 

08) 

(19) 

To sum up, the SOq(3)-symmetry relations are 

' ~ 2 1  -~" ! ' ~ 1 2 '  ' ~ 3 2  -~" ! '~23 ' ,  ' ~ 3 1  -~ ~22 ' ~ 1 3  

q q (20) 

In addition, it has been proved (Song and Liao, 1992, 1993) that in the 
q-Euclidean space E 3 one has the metric giy and 

g/j ,~ = Xg~ (21) 

where h is an eigenvalue of/~. Therefore the metric gq, in fact, is a SOq(3)- 
symmetric numerical matrix. 
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To return to the general case, if ~ = (~rs) is a Gq-symmetric matrix 
whose entries commute with the coordinates x i of P, then F = (x)t~(x) = 
~r~XrX s is a quadratic homogeneous expression on P. We call F a "standard 
quadratic homogeneous expression" on P. 

Proposition 2. Under the coordinate transformation of P as in (5) a 
standard quadratic homogeneous expression on P is changed into a standard 
quadratic homogeneous expression on P. 

Proof  Under the transformation as in (5) 

F---> P = (Y)t2~(Y) = [M(x)]t2~M(x) = (x)t[Mt~M](x) = ( x ) t ~ ( x )  (22) 

By Proposition 1, ~ still is Gq-symmetric, so P is a standard quadratic 
homogeneous expression on P. QED 

Proposition 3. Let the commutation relation (2a) be regarded as a 
substitution 

xix j --) B~rrkx t (23) 

Then under this substitution a standard quadratic homogeneous expression 
is invariant. 

Proof  In fact, by (7) 

F = =~rsXrX s ~ F '  = ~rsB~xix  j = ~ i j x i x  j : F QED (24) 

In the following we discuss quantum-antisymmetric matrices. 

Definition 2. If an n • n matrix ~ = (S~b) (a, b = 1, 2 . . . . .  n) satisfies 

sg,b = - [C-l]~b~ 0 (25) 

where C is defined as in (2c) and (3), then sg is called a (quantum) Gq- 
antisymmetric matrix. 

Remark. The "-~ab Can be both numbers and abstract algebraic elements. 
In the latter case, by the use of polynomials on P some quantum groups can 
be nonlinearly realized. In addition, a Gq-antisymmetric matrix is always not 
an antisymmetric matrix in the ordinary sense unless all quantum deformation 
parameters approach 1 (then [C-l]~b = g/~g~). 

Proposition 4. The Gq-antisymmetry is invariant under a Gg-involution 
transformation, i.e., if ,~/is Gq-antisymmetric and M e Gq, then M = M ' ~ M  
is also Gq-antisymmetric. 

Proof  According to equations (6) and (25), 

-[C-~]~b~ij  = - [C-~]~bM~M}s~s  = M i a M ~ i j  = ~ab (26) 

SO ~ is Gq-antisymmetric. QED 
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Equation (25) can be written as 

( ~ b > a ) t K  b>a = ( , 5 ~ r < s ) t [ - C - 1 ] ; ~  s (27) 

K ~  = ~ , . .  + [ -c - , 1~>> ,  . 

I f  equation (27) is regarded as a linear equation about ~b>a, then we can obtain 

~ b > a  _ ,.41 aTrr~--s 
~--" " V ~ r < s ' r b > a  ( 2 8 )  

r~--s -1 r~--s -1 ">i aIrb> a = [ C  ]~> i [g  ]{6>a 

Similarly, we have 

S~a< b - -  s>--r = ~ s > r ( ~ a < b  

s>--r = |i<j t Ix Ja~.b f~Ja<b [ C  - I]s>-r rig" - l]i<i 

(29) 

Therefore, the general form of a Gq-antisymmetric matrix is 

~11 ~12 "'" ~/,.\ 

= . . ,  . ,  . . . .  

\ _ , ~ s ~ _ ,  _q ,~s~_ ,  ... 

(I)12 ~ s > r  . . . .  s>--r / " ~  11 - -  s>--r (~)ln "5~s~r~ 

= 1 "~22 s>--r _ 

. . . . . .  

\~l.1 ~ln2 "'" 

(30) 

Remark. As for the diagonal entries Ma~ (a = 1, 2 . . . . .  n), it is easily 
seen from Ma~ = -1 0 - [ C  ]aaM 0 that many of the Mll, M22 . . . . .  Sin, in fact, 
are zeros for a concrete C. 

Example 3. For Gq = GLx.qo(N) (Schirrmacher, 1991; Zhong, 1996), 
and/~ as in (14), we can take ~-1 = X/~. Therefore the general form of a 
GLx;qo(N)-antisymmetric matrix is 

0 M12 
-q12.~12 0 

~ . , ,  . , .  

\ - - q l n  S~ln --q2nS~En 

= z) 0 
, . ~  

\ ~.1 M.2 

�9 �9 ~ 

D �9 ~ 

0 m ~ 

~ 1 7 6 1 7 6  

�9 Q I 

--(1/q,n)~L, \ 
- (1/qs 

(31) 
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Example 4. For Gq = SOq(3), e is as in (17). We can take C -l  = q~; 
then the general form of a SOq(3)-antisymmetric matrix is 

0 

6~ = --qMl2 
--~13 

/ 
0 

'~22 S~23) 
--q6~23 

I M21 1 - q2 1 ---- S~32 S~3 I q q,c/~(q2 + q _ 1) q(q2 + q _ 1) 

S~22 --! S~32 
q 

S~32 0 

(32) 

If M is a general Gq-antisymmetric matrix, then we call H = Mabdx~dx b a 
"standard quadratic form" on the quantum hyperplane P. 

Proposition 5. Under the coordinate transformation of  P as in (5), a 
standard quadratic form on P is changed into a standard quadratic form on P. 

Proposition 6. Let the commutation relation (2d) be regarded as a 
substitution 

dxidx j ~ -[C-l]~/dxkdx I (33) 

Then under this substitution a standard quadratic form is invariant. 
The proofs of Propositions 5 and 6 are similar to those of Propositions 

2 and 3, respectively. 
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